Google: благодаря OpenCL механизм логического вывода в TensorFlow ускорится вдвое

Google выпустила для своей платформы TensorFlow на Android новый механизм логического вывода, работающий на мобильных ускорителях через OpenCL. Он доступен в последней версии библиотеки TensorFlow Lite, и компания утверждает, что движок обеспечивает двукратное превосходство по скорости по сравнению с существующим модулем на основе OpenGL при исполнении моделей ИИ «разумного размера».

Google: благодаря OpenCL механизм логического вывода в TensorFlow ускорится вдвое

OpenGL развивается уже три десятилетия как не привязанный к платформе API для рендеринга 2D и 3D. Вычислительные шейдеры были добавлены в версии OpenGL ES 3.1, но команда TensorFlow заявила, что из-за обратной совместимости этот API не позволяет реализовать в полной мере потенциал графических процессоров. С другой стороны, OpenCL с самого начала разрабатывался как стандарт для вычислений с использованием различных ускорителей и лучше подходит для реализации механизма логического вывода на мобильных ускорителях. Это заставило команду TensorFlow провести исследование и в конечном итоге перейти на движок на основе OpenCL.

Google: благодаря OpenCL механизм логического вывода в TensorFlow ускорится вдвое

Благодаря поддержке FP16 и других особенностей ГП в новом механизме логического вывода TensorFlow некоторые старые ускорители вроде Adreno 305 2012 года теперь смогут работать в полную силу. В некоторых случаях прирост оказывается более чем двукратным. Например, при работе поисковой нейронной системы MNASNet 1.3 через новую библиотеку TensorFlow задержки были уменьшены со 100 мс на Vivo Z3 с движком на основе OpenGL до 25 мс с новой версией на базе OpenCL. В другом тесте с алгоритмом обнаружения объектов SSD MobileNet v3 на Huawei Mate 20 также сократил задержки с почти 100 мс до менее чем 25 мс.

Google: благодаря OpenCL механизм логического вывода в TensorFlow ускорится вдвое

Google отметила, что OpenCL не является частью стандартного дистрибутива Android, что делает новую библиотеку недоступной для некоторых пользователей. В качестве временной меры TensorFlow Lite теперь проверяет наличие OpenCL и, если API недоступен, переключается на движок на базе OpenGL.


Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector